skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Fei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    DNA tiles serve as the fundamental building blocks for DNA self-assembled nanostructures such as DNA arrays, origami, and designer crystals. Introducing additional binding arms to DNA crossover tiles holds the promise of unlocking diverse nano-assemblies and potential applications. Here, we present one-, two-, and three-layer T-shaped crossover tiles, by integrating T junction with antiparallel crossover tiles. These tiles carry over the orthogonal binding directions from T junction and retain the rigidity from antiparallel crossover tiles, enabling the assembly of various 2D tessellations. To demonstrate the versatility of the design rules, we create 2-state reconfigurable nanorings from both single-stranded tiles and single-unit assemblies. Moreover, four sets of 4-state reconfiguration systems are constructed, showing effective transformations between ladders and/or rings with pore sizes spanning ~20 nm to ~168 nm. These DNA tiles enrich the design tools in nucleic acid nanotechnology, offering exciting opportunities for the creation of artificial dynamic DNA nanopores.

     
    more » « less
  2. Heuristic algorithms can generalize the design process of stiff and round capsule-like nanostructures made from DNA. 
    more » « less
  3. DNA nanotechnology has been proven to be a powerful platform to assist the development of imaging probes for biomedical research. The attractive features of DNA nanostructures, such as nanometer precision, controllable size, programmable functions, and biocompatibility, have enabled researchers to design and customize DNA nanoprobes for bioimaging applications. However, DNA probes with low molecular weights (e.g., 10–100 nt) generally suffer from low stability in physiological buffer environments. To improve the stability of DNA nanoprobes in such environments, DNA nanostructures can be designed with relatively larger sizes and defined shapes. In addition, the established modification methods for DNA nanostructures are also essential in enhancing their properties and performances in a physiological environment. In this review, we begin with a brief recap of the development of DNA nanostructures including DNA tiles, DNA origami, and multifunctional DNA nanostructures with modifications. Then we highlight the recent advances of DNA nanostructures for bioimaging, emphasizing the latest developments in probe modifications and DNA-PAINT imaging. Multiple imaging modules for intracellular biomolecular imaging and cell membrane biomarkers recognition are also summarized. In the end, we discuss the advantages and challenges of applying DNA nanostructures in bioimaging research and speculate on its future developments. 
    more » « less
  4. Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson–Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated. 
    more » « less
  5. Abstract: Structural DNA nanotechnology has been developed into a powerful method for creating self-assembled nanomaterials. Their compatibility with biosystems, nanoscale addressability, and programmable dynamic features make them appealing candidates for biomedical research. This review paper focuses on DNA self-assembly strategies and designer nanostructures with custom functions for biomedical applications. Specifically, we review the development of DNA self-assembly methods, from simple DNA motifs consisting of a few DNA strands to complex DNA architectures assembled by DNA origami. Three advantages are discussed using structural DNA nanotechnology for biomedical applications: (1) precise spatial control, (2) molding and guiding other biomolecules, and (3) using reconfigurable DNA nanodevices to overcome biomedical challenges. Finally, we discuss the challenges and opportunities of employing DNA nanotechnology for biomedical applications, emphasizing diverse assembly strategies to create a custom DNA nanostructure with desired functions. 
    more » « less
  6. The use of small unmanned aerial system (UAS)-based structure-from-motion (SfM; photogrammetry) and LiDAR point clouds has been widely discussed in the remote sensing community. Here, we compared multiple aspects of the SfM and the LiDAR point clouds, collected concurrently in five UAS flights experimental fields of a short crop (snap bean), in order to explore how well the SfM approach performs compared with LiDAR for crop phenotyping. The main methods include calculating the cloud-to-mesh distance (C2M) maps between the preprocessed point clouds, as well as computing a multiscale model-to-model cloud comparison (M3C2) distance maps between the derived digital elevation models (DEMs) and crop height models (CHMs). We also evaluated the crop height and the row width from the CHMs and compared them with field measurements for one of the data sets. Both SfM and LiDAR point clouds achieved an average RMSE of ~0.02 m for crop height and an average RMSE of ~0.05 m for row width. The qualitative and quantitative analyses provided proof that the SfM approach is comparable to LiDAR under the same UAS flight settings. However, its altimetric accuracy largely relied on the number and distribution of the ground control points. 
    more » « less
  7. Abstract

    Controlled transport of biomolecules across lipid bilayer membranes is of profound significance in biological processes. In cells, cargo exchange is mediated by dedicated channels that respond to triggers, undergo a nanomechanical change to reversibly open, and thus regulate cargo flux. Replicating these processes with simple yet programmable chemical means is of fundamental scientific interest. Artificial systems that go beyond nature’s remit in transport control and cargo are also of considerable interest for biotechnological applications but challenging to build. Here, we describe a synthetic channel that allows precisely timed, stimulus-controlled transport of folded and functional proteins across bilayer membranes. The channel is made via DNA nanotechnology design principles and features a 416 nm2opening cross-section and a nanomechanical lid which can be controllably closed and re-opened via a lock-and-key mechanism. We envision that the functional DNA device may be used in highly sensitive biosensing, drug delivery of proteins, and the creation of artificial cell networks.

     
    more » « less